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The Generation of Square Roots on a Computer 
with Rapid Multiplication compared with 

Division 

By Wendy James and P. Jarratt 

1. Introduction. For computers with rapid multiplication compared with di- 
vision, the iteration for A -", 

Xn= (3 -AXn2), 
(1.1) 2 

Al/2 A Lim xn, 
n -00 

may provide a more economical method for generating square roots than the usual 
technique based on the recurrence 

(1.2) x.+, = I(x. + Ax.-I). 

The number of iterations of (1.1) necessary to achieve a prescribed accuracy will 
depend on the closeness of the initial approximation used and as the range of A is 
decreased, increasingly accurate initial approximations become possible. A way of 
reducing the infinite range (0, oo ) of A to a convenient finite interval consists in ex- 
pressing A in the form a2e, l S a < 1, and using A"2 = a'122b. Still more accurate 
initial approximations are possible if the reduced range is itself split up. 

2. Initial Approximations. As our choice of form for xo is limited to polynomials, 
we require, for some given r, the coefficients ci of 

r-1 

(2.1) xo =E ca 
s-o 

where 0 < N, < a < N2. Following Kogbetliantz (1960) we may set 
N, = b(l - pi), 0 < pi < 1, N2 = b(1 + p2), 0 < p2 < 1, and a = b(1 +A u, 
-pi < U _ p2, so that u is within (-1, 1), and approximate to a-'/2 by a poly- 
nomial F(u) having r undetermined coefficients. We have a -l/2 = b-2(1 + uf'l' 
= Zo wius, where wi = (FlI2/i!)(-+)il(1.2 ** 2i - 1) and if now we let 

, wOu' - F(u) = u G(u), G(u) = E t0o gui', then the relative error E(u) of 
the approximation is E(u) = urG(u)/a-1/2 = bl/2(1 + u)lI2urG(u). It is easy to 
verify that gi+'/9g -* -1 rapidly as i increases and hence, to good accuracy, 
G(u) go(1 + u)-', where go = (b-lI2/r!)(-i)r-I(1.2 ... 2r - 1). Hence 
E(u) - Cu,(1 + U)-1/2, C constant, and we find that E(u) has maximum modulus 
at u = -p,, u = P2. Writing K as the error bound of the approximation, K i8 
minimised when I E(-pl)l = I E(p2)1 = K, and from the equations 

(1 + P2)/(1 - pI) = N2/NI , p{'/(l - pI)"'2 

= P2r/(l + P2),12 K = Cp2r/(1 + P2)1/2, 

we can determine pi, P2 and K and hence b and the coefficients of F(u). However, a 
simple modification to the procedure will give improved approximations. Taking 
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first the case where F(u) is a polynomial of odd degree, K is a minimum when 

E(-pi) = E(p2) =K and also E(u) has constant sign in (-1, 1) since E(O) = 0. 
If then we write Ei(u) E(u) - K/2, we have 

El(u) (a -/2 F(u) -Ka-1/2/2)/a-'2 

and by taking Fl(u) = F(u) + Ka-1"2/2 - F(u)(1 + K/2), K2 being assumed 
negligible, the maximum error will be reduced to K/2. If, however, F(u) is of 
even degree r - 1, the possibility of improvement depends on r and the range 

(NA, N2). Now K is minimized when -E(-p,) = E(p2) = K and if we take 
El(u) = E(u) - Ku/2pl, then El(-pi) = -K/2 and I El(u)l < K/2, for 
-PI < u ? p2 Also El(u) = (a12 - F(u) -Ka"-12/2p,)/a"-12 and we have 

Ku /12Ku\ F,(u) = F(u) + Ku a-1, F(u) ( + 

However, Fl(u) is a polynomial of degree r and hence neglecting the term in u 
gives F2(u) = (1 + Ku/2p1)F(u) - (K/2pi)WrJUr. Hence 

E2 (U) ItK+ Kr Max = 2 ! -1 + _F p2) 2 2pi -P1!UP2 F2(U) 2 P( 
Thus F2(u) will generate more accurate approximations than F(u) provided that 
Wr-lp2r/plF2(P2) is sufficiently small. 

A third method for obtaining best possible approximations (Eve, 1963) con- 
sists in applying a theorem of Chebyshev (Achieser, 1956). Writing EO = 

(XG - a-G/2)/a'-12, we require the coefficients ci in (2.1) so that in (N,, N2) we 
minimise Max I Eo 1. If the ci are chosen such that Eo vanishes at r points in (N, , N2), 
it follows that Eo has r - 1 stationary values Si , where N1 < SI < S2 

< Sri < N2, and by setting 

(2.2) Eo(Nl) = -Eo(Si) = E0(S2) = = ()r-lEo(Sr-1) - rEO(N2), 

we obtain r equations from which the ci may be calculated. The relative errors of 
approximations found by this approach turn out in practice to be about a quarter 
of those of Kogbetliantz's method and about half those resulting from the modified 
procedure. However, the application of (2.2) leads, for r > 1, to a system of non- 
linear equations and, for r > 3, the computational labour involved in their solution 
is heavy. Consequently, since the modified Kogbetliantz method is simple to apply, 
especially when r is even, a decision on which technique to adopt will depend on the 
accuracy requirements of the approximation under consideration. 

3. Sub-Division of (N,, N2). If the error bound K of a particular initial ap- 
proximation is too large, it may be reduced either by increasing the degree of the 
approximating polynomial or by a division of the range. However, from the form of 
(1.1) and the fact that its relative errors satisfy En+ = -En2(En + 3)/2, it is clearly 
uneconomic to use polynomials of greater degree than a cubic. Hence, in a number 
of cases, we must sub-divide (Nl., N2) and it can readily be shown that if the range is 
split up into M intervals, N1 < di ... < d.,, < N2, then for the maximum error 
over the whole range to be minimized, the di must satisfy di = DN1, 
d2 = D2N1, ... dml = DM 'Nl, IV2 = DMN, , this result being independent of the 

method of approximation used. Hence for the interval (.25, 1), the sub-divisions 
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TABLE 1 

Most Economical Approximations to 1/2AVa 

Accuracy SeItriosPrecom- in Correct ! Form of Initial Iterations Opera- puted 
Decimal tions Approximation of (4. 1) tions Con- 
Places M Necessary stants 

6 4 Quadratic 1 5 15 
3 Linear with Shift 2 6 + S 6 

7 4 Cubic 1 6 19 
3 Linear 2 7 9 

8 4 Linear 2 7 11 
2 Quadratic with 2 7 + S 5 

Shift (a) 
9 2 Quadratic with 2 7 + S 5 

Shift (b) 
2 Quadratic 2 8 7 

10 3 Quadratic 2 8 12 
2 Cubic with Shift 2 8 + S 7 

11 3 Quadratic 2 8 12 
2 Linear with Shift 3 9 + S 2 

12 4 Quadratic 2 8 15 
16 2 Quadratic with 3 10 + S 5 

Shift (a) 
2 Quadratic 3 11 7 

18 2 Quadratic with 3 10 + S 5 
Shift (b) 

2 Quadratic 3 11 7 
20 3 Quadratic 3 11 12 

2 Cubic with Shift 3 11 + S 7 

TABLE 2 
Coefficients for Approximations Given in Table 1 

Form of Sec- 
Initial tin s Accuracy Range to ti t2 t3 Approxima- M (25) IIm 

tion 

Linear with 2 .5 .2526 X 10-1 a, 1 .89486 -.40625 
Shift a2 a 1. 2560 -1.125 

Linear 3 .62996 .9962 X 10-2 a, 1 .84275 -.34773 
Linear with 3 .62996 .1889 X 10-1 a, 1 .86555 -.375 

Shift a2 a 1.0576 - .6875 
aC3 a2 1.3325 -1.375 

Linear 4 .70711 .5614 X 10-2 a, 1 .81838 -.32119 
Quadratic 2 .5 .3259 X 10-2 a, 1 1.11667 -1.03240 .417363 
Quadratic 2 .5 .3954 X 10-2 a, 1 1.11076 -1.01573 .40625 

with Shift a2C a 1.58107 -2.93059 2.375 
(a) 

Quadratic 2 .5 .3465 X 10-2 a, 1 1.11491 -1.02745 .4140625 
with Shift a2 a 1.58107 -2.93059 2.375 
(b) 

Quadratic 3 .62996 .9755 X 10-3 a, 1 1.05307 -.876895 .324314 
Quadratic 4 .70711 .4099 X 10-3 a, 1 1.02274 - .806890 .284351 
Cubic with 2 .5 .1921 X 10-2 a, 1 1.269357 -1.702386 1.369610 -.4375 

Shift a2, a 1. 797562-4.835662 7.804216 -5.0 
Cubic 4 .70711 .1209 X 10-3 a, 1 1.186218-1.394930 .9842185- .2755689 
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will be aTM < a"' 
-' 

< a< 1 with = (.25)1IM. If now we approximate in 
(a, 1) by (2.1) it is easy to prove that the corresponding approximation in 
(a'+', ax) is given by 

1.-i 

(3.1) XO = E Ci(1/a)((2$+l)2)at. 
i-O 

4. Results. So that numbers remained fractional during computation, it was 
necessary to rewrite (1.1) in the form 

(4.1) .+, = 2yn(I -ay2) withLimy? = 2a-2. 
L~oo 

Linear and quadratic approximations were then found using the Chebyshev method 
but for cubic approximations it was much simpler to use the modified Kogbetliantz 
approach. However, it was evident from our results that use of the best possible 
cubic would not have decreased the number of iterations of (4.1) required. In 
assessing the best approximation for a particular case, we have given most weight 
to minimising the total number of multiplications, at the same time restricting the 
number of intervals to a reasonable total. As in many cases final accuracies were 
obtained which were better than the target bounds set, it was possible to simplify 
yo at the expense of this excess accuracy by replacing the first multiplication in the 
evaluation of yo by a series of shifts. These results have been given wherever they 
seemed of value. In Table 1, the first entry for each specified final accuracy shows the 
form of approximation which offers the most rapid evaluation of square root, as- 
suming shifting is faster than multiplication. If this is not so, these approximations 
may not be the best and hence where an approximation which uses shifts yields the 
fewest number of multiplications, both the modified and unmodified forms have been 
given. The "Operations" column in Table 1 gives the total number of multiplications 
involved in forming the approximation and carrying out the iterations together 
with S where shifts are also needed in obtaining the initial approximation. The co- 
efficients of the approximations described in Table 1 are given in Table 2. For un- 
modified approximations, only results for (a, 1) have been quoted since the coeffi- 
cients for the other sections of the range may be readily computed from (3.1) 

5. Conclusions. It is clear from an analysis of the forms of (1.1) and (1.2) that 
the method discussed will be superior to methods based on (1.2) if multiplication 
is at least four times as fast as division. This will certainly be true if multiplication 
but not division is done in parallel. If it is satisfied when multiplication is done 
serially, then a further time saving may be effected by replacing the first multi- 
plication in the evaluation of the initial approximation by a small number of shifts. 
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